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Location Problems with Different Norms
for Different Points1,2

P. L. Papini3 and J. Puerto4
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Abstract. Given a finite set A = {a1, . . . , an} in a linear space X,
we consider two problems. The first problem consists of finding the
points minimizing the maximum distance to the points in A; the sec-
ond problem looks for the points that minimize the average distance
to the points in A. In both cases, we assume that the distances at
different points are defined as

d(x, ai)=‖x −ai‖i , for i =1, . . . , n,

with norms ‖·‖i defined on X. The use of different norms to measure
distances from different points allows us to extend some results that
hold in the single-norm case, while some strange and rather unex-
pected facts arise in the general case.
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1. Introduction

Let X be a vector space over the real field R and let

A={a1, . . . , an}⊂X, n≥2, ai �=aj for i �= j,

be a finite subset of X. We associate a norm ‖ · ‖i with each point ai, i =
1, . . . , n. Moreover, we assume that the normed space Xi = (X,‖ · ‖i ) is
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complete for every i. We denote by Bi(x, r) the ball of radius r centered
at x,

Bi(x, r)={y ∈X :‖x −y‖i ≤ r}.

To simplify notation, we refer to the unit ball centered at zero as Bi . Each
norm ‖ ·‖i has associated the so-called dual norm ‖ ·‖o

i defined by its unit
dual ball

Bo
i ={u∈X∗ :u(x)≤1,∀x ∈Bi}.

Also, we denote by C̄ and int(C) the topological closure and the interior
of the set C, respectively.

Consider on X a convex function,

x →f (A, x)=f (‖a1 −x‖1, . . . ,‖an −x‖n).

In this paper, we investigate the problem inf
x∈X

f (A,x) by considering the

two most common functions in this context:

f1(A, x) :x →
n∑

i=1

‖ai −x‖i , (1)

f2(A, x) :x → max
1≤i≤n

‖ai −x‖i . (2)

Several natural situations fall into this formulation; see Ref. 1 or Ref. 2
for the study of this type of problems in location theory. The goal of this
paper is to show how some known results concerning problems (1) and
(2), when only one norm is used, can be extended to this more general sit-
uation, while at the same time some strange and rather unexpected facts
arise in the general case. We note in passing that even the use of (different)
Hilbertian norms not always helps. Recall that a norm ‖ · ‖i is Hilbertian
if it is induced by an inner product, that we denote by (·, ·)i .

Apparently, until now little attention has been devoted to these prob-
lems. Nevertheless, one can find some papers that deal with different
norms such as Refs. 1–11. Reference 1 deals with algorithmic approaches
to some of these problems in the plane; Refs. 2 and 3, where more gener-
ally gauges are used, describe the set of optimal points to some of these
location problems; Ref. 4 deals with Pareto optima and the median prob-
lem (also this one considers gauges); Ref. 5 describes the properties of
the optimal solutions for both medians and centers; Ref. 6 considers also
different gauges (the interested reader may see also the references therein);
Refs. 7–10 cover research based on applications of general convex and
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global optimization techniques to location analysis; Ref. 11 deals with sen-
sitivity analysis with respect to p in Weber problems with different lp
norms. For the sake of completeness, we recall that attempts considering
Pareto solutions with different norms have been done also in Refs. 12–15.

Minimizing fj (A, ·), j = 1,2, is equivalent to the following problem:
given the space Y = (X1 ×· · ·×Xn) endowed with the norm

‖|y‖|1 =
n∑

i=1

‖xi‖i , for j =1,

or

‖|y‖|2 = max
1≤i≤n

‖xi‖i , for j =2,

and given

a = (a1, . . . , an)∈X1 ×· · ·×Xn,

look for the best approximation to a from the diagonal of Y . In other
words, look for a point µ = (m, . . . ,m) [respectively, γ = (c, . . . , c)] in Y

realizing the distance between a and the diagonal.
Note that minimizing f1 or f2 is a convex problem; therefore, for any

ε >0 and j =1,2, the sets

Mε
j (A)={y ∈X :fj (y)≤ inf

x∈X
fj (A, x)+ ε}

are closed and convex. In addition, by the definition of the functions f1
and f2, these sets are also bounded in Y . Therefore, the possibly empty
set of minimizers

Mj(A)={y ∈X :fj (A, y)= inf
x∈X

fj (A, x)}

is closed, bounded, and convex; see e.g. Ref. 16 for examples of empty sets
of solutions.

If all the spaces

Xi = (X,‖ · ‖i ), for i =1, . . . , n,

are reflexive, then the space Y endowed with both norms is reflexive and
Mj(A) �= ∅, for j = 1,2 and any finite set A ⊂ X. If all the norms ‖ · ‖i

are strictly convex, then at most one minimum exists for fj (A, x), j =1,2,
unless A is contained in a line and j =1.

Apart from the above general remarks that apply both to problems
(1) and (2), in the next two sections we analyze separately each of these
problems.
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2. Centers and Diameters

Given x ∈X and A={a1, . . . , an}, let us consider

r(A, x)= max
1≤i≤n

‖x −ai‖i , radius of x with respect to A, (3)

r(A)= inf
x∈X

r(A,X), radius of A, (4)

δ(A)= max
1≤i,j≤n

‖ai −aj‖i , diameter of A. (5)

We say that c∈X is a general center (or simply a center, when no confu-
sion is possible) of A if

r(A, c)= r(A). (6)

The reader may notice that this notion of center differs from that of the
classical Chebyshev center and other definitions given in the literature; see
Refs. 17–18.

Also, for ε >0, we set

cε(A)={x ∈X : r(A, x)≤ r(A)+ ε}, (7)

c(A)={x ∈X : r(A, x)= r(A)}=
⋂

ε>0

cε(A). (8)

As noticed in the introduction, c(A) [also denoted as M2(A)] is a possibly
empty closed, bounded, convex subset of X.

For A={a1, . . . , an}, we consider also, for i fixed between 1 and n, the
numbers ri(A, x), ri(A), and δi(A) when only the norm determined by i is
considered. Also, ci is an i-center of A if

ri(A, ci)= ri(A).

Here, ci is the usual center of A in the space Xi .
Clearly, for every finite set A, we have

δi(A)/2≤ ri(A)≤ ri(A, ai)≤ δi(A)≤ δ(A);
also,

r(A)≤ r(A, xi)≤ δ(A)= max
1≤i≤n

δi(A)≤2 max
1≤i≤n

ri(A).

Nevertheless, despite the above inequalities, it is not easy to estimate
the value r(A). The following example proves that

r(A)� max
1≤i≤n

ri(A).
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Example 2.1. Consider in R
6 the vectors

a1 = (1,0,0,0,0,0), a2 = (0,1,0,0,0,0), a3 = (0,0,1,0,0,0),

a4 = (0,0,0,5,0,0), a5 = (0,0,0,0,5,0), a6 = (0,0,0,0,0,5),

with

‖x‖1 =‖x‖2 =‖x‖3 =
∑6

i=1
|xi |,

‖x‖4 =‖x‖5 =‖x‖6 = (8/5) max
1≤i≤6

|xi |.

Take

c= (0,0,0,0,0,0)

to check that

r1(A)= r2(A)= r3(A)≤5.

In addition, take

c= (0,0,0,5/2,5/2,5/2)

to check that

r4(A)= r5(A)= r6(A)≤4.

Let us denote by c̄ a general center. In order to have r(A) ≤ 5, we
must take for the last three components of c̄ a value α so that

(5−α)8/5=8−1.6α ≤5,

that is, α ≥15/8. But now, if we consider a1, we get

‖a1 − c̄‖1 ≥3× (15/8)>5,

so r(A)>5.
The next result extends Theorem 1 in Ref. 19; generalizations (in case

of a single norm) were indicated in Section 4 of Ref. 20.

Theorem 2.1. Let c be a center of A={a1, . . . , an} and let Ac ={ai ∈
A :‖c−ai‖i = r(A)}. Then, we have r(A)= r(Ac). Hence, c is a center also
for Ac.
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Proof. Clearly, since Ac ⊆A, we have

r(Ac)≤ r(A).

Assume that

r(Ac)= r(A)− ε, for some ε >0.

Let

σ = inf{r(A)−‖c−ai‖i :ai ∈A\Ac}.
Take c′ ∈X such that

r(Ac, c
′)≤ r(A)− ε/2.

Now, take λi ∈ (0,1) such that

λi‖c− c′‖i <σ, i =1, . . . , n;
then, let

λ= min
1≤i≤n

{λi} and c′′ = c+λ(c′ − c).

For ai ∈Ac, we have

‖c′′ −ai‖i =‖(1−λ)c+λc′ −ai‖i

≤ (1−λ)‖c−ai‖i +λ‖c′ −ai‖i

≤ (1−λ)r(A)+λ(r(A)− ε/2)

<r(A);
if ai ∈A\Ac, we have

‖c′′ −ai‖i ≤‖c−ai +λ(c′ − c)‖i

< r(A)−σ +σ

= r(A).

Thus,

‖c′′ −ai‖i < r(A), for any i.

This contradiction proves the thesis.

Corollary 2.1. If c is a center of A = {a1, . . . , an}, then ‖c − ai‖i =
r(A) for at least two indexes.
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Remark 2.1. If a single norm is used and X is strictly convex, then
there is at most one center c of A such that either

‖c−aij ‖= r(A),

for a pair ai1 , ai2 determining a diameter of A[c = (ai1 +ai2)/2], or there
are at least three points ai1 , ai2 , ai3 such that

‖c−ai1‖=‖c−ai2‖=‖c−ai3‖= r(A)

and

c∈ co({ai1 , ai2 , ai3}).
The reader can see in Example 2.4 that this is not true when different
norms are used. See also Figure 2.

Not always centers of sets exist. Following the lines of the proof given
in Ref. 20 for usual centers (with respect to a given norm), we can give the
following more general result.

Proposition 2.1. Given A={a1, . . . , an}, let r(A)= r. Then, for every
σ ∈ (0, r], there is a subset Aσ of A such that r(Aσ ) ∈ [r − σ, r] and, for
some cσ ∈X, r −σ ≤‖cσ −ai‖i ≤ r +σ for all ai ∈Aσ .

Chebyshev centers in Hilbert spaces can be characterized in the fol-
lowing way (see Theorem 2.1 in Ref. 21).

Proposition 2.2. Let A={a1, . . . , an} be contained in a Hilbert space
X; then, c is the (unique) center of A if and only if, for every x ∈X, we
have

r2(A)+‖x − c‖2 ≤ r2(A, x).

The extension of this result for centers in our sense (when all the
norms used are Hilbertian but different) is not possible, as the following
example shows.

Example 2.2. In the plane let

A={a1, a2, a3},
with

a1 = (0,0), a2 = (0,3), a3 = (3,0).
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Consider the following norms:

‖x‖1 = (1/2)

√
x2

1 +x2
2 , ‖x‖2 =

√
x2

1 +x2
2 , ‖x‖3 = (1/

√
13)

√
x2

1 +x2
2 .

The point c= (0,2) is the unique center of A and

r(A)=1=‖c−ai‖i , i =1,2,3.

If we take

x = (4/5,13/5),

we have

‖x −ai‖2
i ≤‖x −a1‖2

1 = (1.3)2 + (0.4)2 =1.85;

also,

‖x − c‖2
2 =1.

Therefore,

r2(A)+‖x − c‖2
2 > [ max

1≤i≤3
‖x −ai‖i ]2.

The catalogue of the unexpected facts can be enlarged from other
well-known results of the single-norm case. Indeed, for a single norm, we
have always

δ(A)≤2r(A).

Nevertheless, apart from the direct inequalities

δi(A)≤2ri(A),

nothing similar can be expected in general as shown by Example 2.3.
Moreover, it is not difficult to see that the equidistant set,

E(ai, aj )={x ∈X :‖x −ai‖i =‖x −aj‖j },

even if ‖ · ‖i ,‖ · ‖j are Euclidean, is not in general a straight line.
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Example 2.3. Let X be a plane; let

A={a1, a2, a3},

with

a1 = (0,1), a2 = (1,0), a3 = (0,0).

Let

‖x‖1 =‖x‖2 =
√

x2
1 +x2

2 , ‖x‖3 =n

√
x2

1 +x2
2 ,

so that

‖a1 −a2‖1 =‖a2 −a1‖2 =
√

2,

‖a1 −a3‖1 =‖a2 −a3‖2 =1,

‖a3 −a1‖3 =‖a3 −a2‖3 =n.

We have

r(A)≤ r(A, a3)=max(‖a3 −a1‖1,‖a3 −a2‖2)=1;

in fact, the center is

[1/(1+
√

2n2 −1),1/(1+
√

2n2 −1)].

Also,

r(A)=n
√

2/(1+
√

2n2 −1), δ(A)=n,

so that, for every n≥1, we get

δ(A)>nr(A).

In addition this example shows that

r3(A)
√

2= δ(A);

so, for n large,

r3(A)>r(A)+ r1(A)+ r2(A).
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Remark 2.2. It is known that, if dim(X) = 2 or if X is Hilbertian,
then there is a Chebyshev center of A contained in the convex hull of A;
moreover, if A is contained in a line, then

r(A)= δ(A)/2

and the middle point of A is a center. All these facts are not true for the
centers that we are considering, as it is proved by the following example.

Example 2.4. In X =R
2, take the points

a1 = (−1,1), a2 = (1,−1),

with unit balls Bi, i = 1,2, respectively. The unit balls translated into the
corresponding points are (see Fig. 1)

a1 +B1 ={(x, y)∈R
2 : 4(x +1)2/(2+

√
3)2 +4(y −1)2 ≤1},

a2 +B2 ={(x, y)∈R
2 : 4(y +1)2/(2+

√
3)2 +4(x −1)2 ≤1}.

For the sake of simplicity, set

α =2 cos((5/12)π)/(
√

6+
√

2).

In this case, the center is

c= (1−α,1−α)∼= (0.865,0.865).

Fig. 1. Center of {a1, a2}, Example 2.4.
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Thus, we have

‖a1 − c‖1 =‖a2 − c‖2 =2
√

(2−α)2/(2+
√

3)2 +α2 ∼=1.035,

r1(A)= r2(A)=2
√

(2+
√

3)−2 +1∼=2.071.

Hence, we have

r(A)=1<min{r1(A), r2(A)}.

In addition , we take

a3 = (−1,−1),

with

a3 +B3=
{
(x, y)∈R

2 :ρ2(x +1, y +1)

[
1/16+√

2/4 −1/16+√
2/4

−1/16+√
2/4 1/16+√

2/4

]

(
x +1
y +1

)
≤1

}
,

where

ρ =
[

2
√

(2−α)2/(2+
√

3)2 +α2

]
/α

4√2.

We have

‖a3 − c‖3 =2
√

(2−α)2/(2+
√

3)2 +α2 ∼=1.035.

Therefore, c is also the center of {a1, a2, a3}. Nevertheless, c �∈ co({a1, a2,

a3}); see Figure 2.

3. Medians

Given x ∈X and A={a1, . . . , an}, let us consider

µ(A,x)=(1/n)
∑

1≤i≤n

‖x−ai‖i , average distance of x with respect to A, (9)

µ(A)= inf
x∈X

µ(A,x). (10)

We say that m ∈ X is a general median (a median, when no confusion is
possible) of A if

µ(A,m)=µ(A). (11)
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Fig. 2. Center of {a1, a2, a3} does not belong to co({a1, a2, a3}), Example 2.4.

A median will be called also a minisum point. The (possible empty) set of
general medians is denoted by

M(A)={x ∈X :µ(A)=µ(A,x)}. (12)

By examining some of the properties that have standard Chebyshev cen-
ters and medians (see e.g. Ref. 22), we realize that most of them do not
extend to general centers and medians. This fact gives rise to counterintu-
itive situations. For example, Example 2.4 shows that

(‖y −a‖1 =‖y −a‖2, y = (a1 +a2)/2) �⇒ (y is a median or a center).

The reader may notice that one has the same conclusion, even if dim(X)=
2 and the norms used are Hilbertian. The same example shows as well
that

(y is a median and ‖y −a1‖1 =‖y −a2‖2) �⇒y = (a1 +a2)/2.

Nevertheless, there are also some positive results. We start with a simple
inequality.

Proposition 3.1. If x, y ∈X, then (1/n)
n∑

i=1
‖x −y‖i ≤µ(A,x)+µ(A,y).

Proof. We have that

‖x −y‖i ≤‖x −ai‖i +‖ai −y‖i , for every i =1, . . . , n.

By adding on i and dividing by n, we obtain the inequality.
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Corollary 3.1. If m1, m2 are medians of A, then

(1/n)

n∑

i=1

‖m1 −m2‖i ≤2µ(A).

Remark 3.1. The inequalities obtained in Proposition 3.1 and in its
corollary are sharp, also when a single norm is used. However, we cannot
expect in general that

‖m1 −m2‖i ≤2µ(A), for every i,

as the following example shows.

Example 3.1. Take

A={a1, a2, a3, a4},

where

a1 = (1,0), a2 = (−1,0), a3 = (3/2,0), a4 = (−3/2,0),

X being a plane and

‖x‖1 =‖x‖2 = max
i=1,2

|xi |, ‖x‖3 =‖x‖4 = (1/2) max
i=1,2

|xi |.

If

m1 = (0,1), m2 = (0,−1),

then we have

µ(A,m1)=µ(A,m2)= (1/4)(1+1+3/4+3/4)=7/8.

Hence,

‖m1 −m2‖i =2, for i =1,2.

As in the case of general centers, there are not easy estimates of the
value µ(A). The following example proves that

µ(A) �≤ max
i≤i≤n

µi(A).
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Example 3.2. Continuation of Example 2.1. Take

m= (0,0,0,0,0,0), for i =1,2,3,

then,

‖m−a1‖i =‖m−a2‖i =‖m−a3‖i =1,

‖m−a4‖i =‖m−a5‖i =‖m−a6‖i =5.

Therefore

µi(A)=µi(A,m)=3.

For i =4,5,6, take

m′ = (0,0,0,5/2,5/2,5/2),

then,

‖m′ −a1‖i =‖m′ −a2‖i =‖m′ −a3‖i =‖m′ −a4‖i =‖m′ −a5‖i =‖m′ −a6‖i =4.

Thus,

µi(A,m′)=4, i =4,5,6.

In fact, µi(A)=4 and m′ is a median.
On the other hand,

m′′ = (0,0,0,0,0,0)

realizes the general median of A and

‖m′′ −a1‖1 =‖m′′ −a2‖2 =‖m′′ −a3‖3 =1,

‖m′′ −a4‖4 =‖m′′ −a5‖5 =‖m′′ −a6‖6 =8.

Hence,

µ(A)=µ(A,m′′)=4.5> max
i=1,...,6

µi(A).

Other properties of the set of general medians are the following.

Proposition 3.2.

(i) If m∈M(A) and ‖m−ai‖i =const, for all i =1, . . . , n, then m∈
c(A).
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(ii) If m∈M(A), then m∈M(A∪{m}) for any norm ‖ ·‖0 associated
with m.

(iii) If m∈M(A) and yi is a point in the open segment between m

and ai , i = 1, . . . , n, that has associated the same norm as ai ,
then m ∈ M({m,y1, . . . , yn}) for any norm ‖ · ‖0 associated with
m.

Proof.

(i) It is trivial.
(ii) For any x ∈X, take a0 =m and then

n∑

i=0

‖m−ai‖i =
n∑

i=1

‖m−ai‖i

=min
x∈X

n∑

i=1

‖x −ai‖i

≤
n∑

i=0

‖x −ai‖i .

(iii) Set

yi =m+λi(ai −m), 0<λi <1.

We have
n∑

i=1

‖m−yi‖i =
n∑

i=1

(‖ai −m‖i −‖ai −yi‖i )

≤
n∑

i=1

(‖ai −x‖i −‖ai −yi‖i )

≤
n∑

i=1

‖x −yi‖i ,∀x.

Now, we can apply (ii) to m and the set {y1, . . . , yn}.

In general, one can characterize medians adapting a result from
Ref. 3; see Theorem 3.1 in Ref. 3.

Proposition 3.3. A point m ∈ X,m �∈ A, is a general median of A if
and only if there exist n norm-one functionals ‖ui‖o

i =1, i =1, . . . , n, such
that

∑n
i=1 ui =0 and ui(m−ai)=‖m−ai‖i , i =1, . . . , n.
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Moreover, we can derive also a useful condition for the coincidence
of a general median with one of the points in A.

Theorem 3.1. The point a1 ∈A is a general median of A if and only
if there exist n−1 norm-one functionals ui i =2, . . . , n, such that ui(a1 −
ai)=‖a1 −ai‖i and ‖∑n

i=2 ui‖o
1 ≤1.

Proof. From the first-order optimality condition, a1 is a general

median iff there exist n functionals ui ∈∂‖a1 −ai‖i such that
n∑

i=1
ui =0. The

condition

ui ∈ ∂‖a1 −ai‖i , for i =2, . . . , n,

is equivalent to

ui(a1 −ai)=‖a1 −ai‖i , ‖ui‖o
i =1,

while for i =1 it means that

u1 ∈Bo
1 :={u :‖u‖o

1 ≤1}.
Now, take

u1 =−
n∑

i=2

ui;

then,

‖
n∑

i=2

ui‖o
1 ≤1.

Conversely, assume that there exist ui ∈∂‖a1 −ai‖i for all i =2, . . . , n such

that ‖
n∑

i=2
ui‖o

1 ≤1. Thus, there exists u1 ∈Bo
1 such that

u1 =−
n∑

i=2

ui,

i.e.,

n∑

i=1

ui =0.

Hence, a1 is a general median of A.
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Corollary 3.2. (Majority Theorem.) Assume that ‖ ·‖i =wi‖ ·‖1, wi ≥
0 for all i = 1, . . . , n. If there exists aj such that wj >

∑
i �=j

wi , then aj is a

general median of A.

It is known that, when a single norm is used and

A={a1, a2},
then

M(A)= [a1, a2]‖·‖ :={x :‖a1 −x‖+‖x −a2‖=‖a1 −a2‖}.
The set [a1, a2]‖·‖ is usually called the metric segment of the norm between
a1 and a2 (see Ref. 23). Obviously, this result cannot be extended to deal
with general medians, because here each point uses a different norm. Nev-
ertheless, there exists a way to generalize the concept of metric segment
using tools from convex analysis. Let

Ni(p)={x : 〈p −u, x〉≤0, ∀u∈Bo
i },

the normal cone to the dual ball of Bi at p.

Proposition 3.4. The metric segment

[a, b]‖·‖ ={x :‖a1 −x‖+‖x −a2‖=‖a1 −a2‖}
coincides with the set (a1 + N(p1)) ∩ (a2 + N(p2)), with pi ∈ Bo

i , i = 1,2,
and p1 +p2 =0.

Proof. Since

inf
x∈X

(‖x −a1‖+‖x −a2‖)≥‖a1 −a2‖,

then x ∈ [a1, a2]‖·‖ iff there exist pi ∈ ∂‖x − ai‖ for i = 1,2 such that
p1 +p2 =0 (apply [a1, a2] the first-order optimality condition). Now,

pi ∈ ∂‖x −ai‖, for i =1,2, iff pi ∈Bo
i and pi(x −ai)=‖x −ai‖, i =1,2.

Since

‖x‖= sup
u∈Bo

u(x),

it holds that

{x :pi(x −ai)=‖x −ai‖}=ai +N(pi), for i =1,2.

This proves the result.



690 JOTA: VOL. 125, NO. 3, JUNE 2005

Therefore, given a1, a2 with their respective norms ‖ · ‖i , i = 1,2,

the metric segment, which depends now on the respective norms at
a1, a2 is

[(a1,‖ · ‖1); (a2,‖ · ‖2)]= (a1 +N1(p1))∩ (a2 +N2(p2)),

for some pi ∈Bo
i , i =1,2, p1 +p2 =0.

First of all, we note in passing that the above concept is well-defined;
i.e., the metric segment is uniquely defined. Indeed, by Proposition 3.3
[(a1,‖ ·‖1); (a2,‖ ·‖2)] �=∅ coincides with the set of minimizers of the prob-
lem

min
x∈X

(‖x −a1‖1 +‖x −a2‖2);

this is a consequence of Theorem 3.1 in Ref. 3. Therefore, our definition is
correct, since the set of minimizers is well-defined regardless of the norm-
one functionals used in its description.

These metric segments contain always the rectilinear segment when a
single norm is used. This establishes a new difference with respect to the
case considered in this paper. When different norms are used, the met-
ric segments may reduce to a singleton as it is shown in the following
example.

Example 3.3. Consider on the plane

a1 = (0,0), a2 = (1,0),

with

‖x‖1 =2‖x‖2, for any x ∈R
2.

In this case, it is clear that

[(a1,‖ · ‖1), (a2,‖ · ‖2)]={a1}.

Also, in the single-norm case in the plane, it is well-known that, if
A = {a1, a2, a3, a4} forms a convex quadrilateral, then the intersection of
the two diagonals [a1, a3] ∩ [a2, a4] is a minisum point of A, a point min-
imizing the sum of the distances from A; see Chapter 3 in Ref. 24. This
results fails to be true with different norms.
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Example 3.4. Let

A={a1, a2, a3, a4},

with

a1 = (0,0), a2 = (1,0), a3 = (1,1), a4 = (0,1),

and norms associated with the different points given by

‖x‖i = (1/2i )l2(x), for all i =1, . . . ,4,

l2(x)=
√

x2
1 +x2

2 is the Euclidean norm in the plane.

With these norms, the minisum problem is strictly convex. Thus, there
exists a unique median point of A. Then, Corollary 3.2 ensures that the
unique median is the point a1.

We can give also some positive results regarding metric segments.
The following result extends a characterization of median points given in
Ref. 23 for the single norm case. Notice that the proof is new and simpler
than the one given in Ref. 23.

Theorem 3.2. If A can be partitioned into a set of pairs {ai, aj } such
that

⋂

{ai ,aj }⊂A,ai �=aj

[(ai,‖ · ‖i ); (aj ,‖ · ‖j )] �=∅,

then this intersection is exactly the median set of A.

Proof. The set of medians of A is given by the minimizers of the fol-
lowing problem:

inf
x∈X

n∑

i=1

‖x −ai‖i .

By hypothesis, there exists a partition of A such that
⋂

{ai ,aj }⊂A,ai �=aj

[(ai,‖ · ‖i ); (aj ,‖ · ‖j )] �=∅.
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By the arguments above,

[(ai,‖ · ‖i ); (aj ,‖ · ‖j )]=arg min
x∈X

(‖x −ai‖i +‖x −aj‖j ),

for any pair {ai, aj } of the partition of A. Then, it is clear that

arg min
x∈X

n∑

i=1

‖x −ai‖i =
⋂

{ai ,aj }∈Partition

[(ai,‖ · ‖i ); (aj ,‖ · ‖j )].

Proposition 3.5. Let ‖ ·‖i be Hilbertian norms, i =1, . . . , n. Let m be
a median of A and ‖m−ai‖i = k, for i =1, . . . , n and some k ∈R

+. Then,
we have

n∑

i=1

‖m‖2
i =

n∑

i=1

‖ai‖2
i −nk2.

Proof. Let m be a median of A. According to Proposition 3.3, there
exist functionals ui, i =1, . . . n satisfying

n∑

i=1

ui =0 and ui(y)= (m−ai, y)i/k,

where (·, ·)i denotes the scalar product defining ‖.‖i . Therefore,
n∑

i=1

ui =0

means that

n∑

i=1

(m, y)i =
n∑

i=1

(ai, y)i, for every y ∈X.

By taking y =m, we obtain

2
n∑

i=1

‖m‖2
i =2

n∑

i=1

(ai,m)i

=−
(

n∑

i=1

‖ai −m‖2
i −

n∑

i=1

‖ai‖2
i −

n∑

i=1

‖m‖2
i

)

=−nk2 +
n∑

i=1

‖ai‖2
i +

n∑

i=1

‖m‖2
i ,

which is the thesis.
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Finally, we conclude the paper showing some relationships between
general medians and centers. Set

s(A)=
∑

1≤i,j≤n

‖ai −aj‖i

=
∑

1≤i<j≤n

(‖ai −aj‖i +‖ai −aj‖j ),

sj (A)=
n∑

i=1

‖aj −ai‖i

=nµ(A,aj ), for j =1, . . . , n.

Therefore,

s(A)=
n∑

j=1

sj (A).

Moreover,

s(A)=n

n∑

i=1

µ(A,ai)

≤n

(
((n−1)/n)

n∑

i=1

ri(A)

)

≤ (n−1)

n∑

i=1

δi(A)

≤ (n−1)nδ(A),

so

µ(A)≤
∑n

i=1 µ(A,ai)

n
≤ [(n−1)/n] δ(A).

In addition, we get the following result that implies the same relation-
ship.

Proposition 3.6. Given A={a1, . . . , an}, let g= (1/n)
∑n

i=1 ai , where g

is the centroid of A. Then, we have

µ(A,g)≤ (1/n)

n∑

i=1

µ(A,ai)

= s(A)/n2.
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Proof. The proof follows from the convexity of µ(A,x).

Finally, the inequality

µ(A)≤ [(n−1)/n] δ(A), #A=n,

follows from Proposition 3.6.
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